SPSS分类分析:决策树
一、决策树(分析-分类-决策树)
“决策树”过程创建基于树的分类模型。它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。此过程为探索性和证实性分类分析提供验证工具。
1、分段。确定可能成为特定组成员的人员。
2、层次。将个案指定为几个类别之一,如高风险组、中等风险组和低风险组。
3、预测。创建规则并使用它们预测将来的事件,如某人将拖欠贷款或者车辆或住宅潜在转售价值的可能性。
4、数据降维和变量筛选。从大的变量集中选择有用的预测变量子集,以用于构建正式的参数模型。
5、交互确定。确定仅与特定子组有关的关系,并在正式的参数模型中指定这些关系。
6、类别合并和连续变量离散化。以最小的损失信息对组预测类别和连续变量进行重新码。
7、示例。一家银行希望根据贷款申请人是否表现出合理的信用风险来对申请人进行分类。根据各种因素(包括过去客户的已知信用等级),您可以构建模型以预测客户将来是否可能拖欠贷款。